The advantages of Avalanche Photodiode (APD) arrays in laser ranging applications

Jana Strasburg University of Washington

13th International Laser Ranging Workshop October 7-11

Eric Adelberger,

Thomas Murphy,

Jana Strasburg,

Christopher Stubbs

University of Washington

Kenneth Nordtvedt

Northwest Analysis

Jean Dickey,

Jim Williams,

Jet Propulsion Laboratory

Bruce Gillespie

Apache Point Observatory

John Goodkind

University of California, San Diego

APOLLO Return Rates

Link Efficiency,
$$\varepsilon = \eta^2 f Q \left(\frac{nd^2}{r^2 \Phi^2} \right) \left(\frac{D^2}{r^2 \phi^2} \right)$$

 η = telescope/atmospheric efficiency

f= receiver throughput

Q =detector efficiency

n = number of corner cubes in array

d = diameter of corner cubes

r =distance to the moon

 Φ = atmospheric divergence

D = diameter of telescope

 ϕ = corner cube divergence

- With 1 arcsecond seeing,
 40% telescope efficiency,
 25% receiver efficiency, and
 30% detector efficiency, the
 link efficiency is 1.7 x 10⁻¹⁷.
- •A 115 mJ laser pulse at 532 nm contains 3.1×10^{17} photons.

APOLLO should receive 5 - 10 photons per pulse

Complications of multiple photons

- Most detectors would only detect the first photon reliably
 - Would bias data to shorter times/ranges
- Need a way to time-tag each individual return photon or determine the centroid of the return pulse
 - Fibers or beam splitters to individual detectors
 - -???

-Courtesy of Lincoln Labs

Lincoln Labs APD array characteristics

Element Spacing 100 μm

Active Diameters 20, 30, 40 µm

Device Thickness $\sim 20 \, \mu m$

Formats Produced 4×4 and 32×32

Breakdown Voltage ~ 25 V

Photon Detection Efficiency 30% (> 50% with AR coating)

Dark Count Rate $\sim 2400e^{0.106T} \text{ s}^{-1}$, T in °C

Effective Resistance $25 \text{ k}\Omega$

Effective Capacitance < 2 pF

Lincoln Lab APD arrays

- Oversample the return pulses
 - Less than one photon detected per given element
- Involve low bias voltages and relatively simple readout electronics
- Demonstrate very high time precision of 30 ps RMS

Timing Results

Advantages of oversampled APD arrays

- Can detect multiple return photons per pulse
 - Creates a range profile with each shot

Range Profile

• Can improve centroiding by more than \sqrt{N} if the general shape of the profile is known

Advantages of oversampled APD arrays

- Can detect multiple return photons per pulse
 - Creates a range profile with each shot
- Spatial information is preserved
 - Facilitates closed-loop tracking and acquisition
 - Permits the evaluation of systematic errors such as beam focus and transmit/receive coalignment based on the 2D footprint
 - Allows for the imaging of standard stars to monitor long-term throughput

Apollo 15 with centered return and 1 arcsecond seeing

Apollo 15 with offset return and 1 arcsecond seeing

Apollo 14 with centered return and 1.5 arcsecond seeing

Legend

- Calibration return
- Box scatter
- Optics scatter
- Lunar background
- Dark count
- Twilight background
- Lunar return

Summary

- APD arrays have high timing resolution of at least 30 ps RMS
- Array format ...
 - Allows for detection of multiple photons
 - Creates a range profile with each shot
 - Preserves spatial information
 - Facilitates closed-loop tracking and acquisition
 - Permits the evaluation of systematic errors based on 2D footprint